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Some Notes on the Optimum Design of Stepped

Transmission~Line Transformers*
L. SOLYMAR~

Summary—This paper describes an optimum design of monotonic
stepped transmission-line transformers when the reflection coeffi-
cient and the bandwidth ratio are prescribed. For the analysis, dis-
conthmity capacitances and reflection interactions are neglected and
the validity of the conclusions is therefore restricted to small steps.
The analysis is applicable to a multistep transmission line of which

the quarter-wave transformer is a special case. In particular, it is

shown that if the number of steps is increased from three to five a

larger bandwidth may be obtained, but it is not possible to reduce

the over-all length in this manner. For a given bandwidth, the

shortest taper is always a stepped transmission line and never a

continuous one.

INTRODUCTION

T
HE optimum design of stepped transmission-line

transformers (hence called step-lines) has been

a subject of interest for the past few years,

At first Burkhardtmaierl gave an optimum design

method for step-lines using the Tcheb]-cheff poly-

nomials. Bolinder, 2 solving approximately the syn-

thesis of continuous lines, suggested the use of Dolph’s

method for optimizing the properties of the step-lines.

Collin,3 independently of Burkhardtmaier, solved the

same problem and got the same results. Riblet4 gave

the general synthesis of step-lines and proved the physi-

cal realizability of the optimum step-line. Cohn,5 sup-

posing small steps, derived simple expressions for the

design of the optimum step-line.

The problem solved in these papers is the following:

For a specified number of steps the design method

provides the maximum possible bandwidth for a speci-

fied reflection coefficient, or conversely, the minimum

possible reflection coefficient for a given bandwidth. The

length of the steps (at center frequency) is in each case

a quarter-wavelength.

By increasing the number of steps, wider bandwidth

is attainable, but the over-all length of the step-line
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increases. The question obviously arises: Is it possible

to realize the same speciffed reflection coefficient with

a shorter over-all length (using, where necessary, steps

shorter than the quarter-wavelength) if we allow a

certain reduction in the bandwidth?

Because of the validity of the different approxima-

tions, some restrictions upon the form of the step-line

are necessary. (For the design, all the solutions neglect

the higher order modes and the junction discontinuities.)

Therefore we use the requirement that the taper has to

be monotonic. In our calculations we shall apply the

same approximations as Cohn; i.e., we assume small

steps.

DESIGN OF .4 GENERAL (ATOT-QUARTER-WAV~)

STEP-LINE

Assuming that the steps are small, we may neglect

reflection interactions and express the reflection co-

efficient of the step-line (see Fig. 1) referred to the

center as follows:

where

2.+1– 2. 1 2.+1
Am = —— ~_ln—

2.+1 + z. 2 z.,

Z~ = the characteristic impedance of the mth step,

P = phase-change coefficient,

1= the length of a step.

Supposing the step reflections to be symmetrical,

i.e., AI=A., Az=An-1, etc., and n to be odd (as will

be clear later, this by no means restricts generality), we

get

p = A(n+,),, + 2A (n.-,),~ Cos 2f#l

+ 2A (rt_j),z COS 4@ + . . ! + 2.4, Cos (), – I)lp. (2)

To get an optimum performance, we let the reflection

coefficient be proportional to a Tchebycheff polynomial,

i.e.,

p = aT(n–]J/2(A COS 24 + P) (3)

wheree

GItTe use the same method by which Riblet generalized Dolph’s
paper. See H. J. Riblet, ‘(Discussion on ‘A current distribution for
broadside arrays which optimizes the relationships between beam-
width and side-lobe level,’ “ plloc. IRE, VO]. 35, pp. 489492; h~ay,
1947.-.

C. L. Dolph, ‘(.A current distribution for broadside arrays which
optimizes the relationship between beam-width and side-lobe level, ”
PROC. IRE, vol. 34, pp. 335–348; June, 1946.
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Fig. l—The stepped transmission line.

Tin(x) = Cos (m Cos–1 %) Izl<l

~~(x) = cosh (w cosh-’ x) I x I >1. (4)

Ylow, having two free parameters ~ and V, we may pre-

scribe the value of the reflection coefficient at zero fre-

quency and at the highest frequency of the pass band

as well. Hence the two unknowns in the argument

may be determined by the conditions

l=P if @=O (5)
Pm

and

P
— =1 if ~=qi~,
Pm

where pm is the specified value of the reflection coeffi-

cient in the pass band and P is defined by (5); i.e., it

is the ratio of the reflection coefficient at zero frequency

and the maximum reflection coefficient in the pass

band. Choosing a = pm, the equations for the unknowns

are

p+v=zo

#cos2@2+v=–1 (6)

where ZO is to be determined by

T(n-l),,(zo) = p. (7)

Solving (6) for p and v, we get

Zo+l 1 + Zo Cos 2#2
~=—— v=—

1 – Cos 242 ‘ 1 – Cos 242
(8)

In Fig. 2 we see the transformation

z=pcos2++v. (9)

When q5 changes from O to q5z(@Z< 90°), z runs from

Zo to --1. At @ =@l (where ~1 fulfills p cos 2@l+v = 1)

z==l. So between~l andqiz, ]z] 51.

Because of the properties of the Tchebycheff poly-

nomial, if I z I ~ 1, then I T1p(fi–l) (z) ] <1. SO between

A2 = 27ri/@2 and Al= 27rl/41 the reflection coefficient ful-

fills the requirements. The design is optimum in the

sense that for a given ~, and for a given @z (i. e., lower

edge of the band is given), it results in the greatest

bandwidth.

It maybe shown that our design contains, as a special

case, the design of Cohn. If & =90 degrees our design

agrees with that of Cohn for n steps. If

Fig. 2 —The transformation z =P cos 2:++u.

()42=* COS–1 –L ,
Zo

i.e., v =0, we get the step-line of Cohn for (n+ 1)/2

steps. So it also includes all the cases when the number

of steps is even.

Further, we must compute the coefficients

( Ak
Ak or the coefficient ah = —.

Pm )

and with their help, determine the characteristic irriped-

antes. Performing the necessary calculations, we get

for the ratio of consecutive characteristic impedances

Zm+l ()Zn.}l aJ(al + a2 . ~ . + G).
—— . —— (10)

z. ZI

It may be immediately seen from (10) that the re-

quirement for a monotonic step-line is equivaler t to

the mathematical condition that am> O.

Examples

If %=3, T(n_I)l,(Z) = T,(z) ‘Z=P COS 24+v.

Equating the coefficients

a2 + 2a1 cos 24 = P cos 24 + v (11)

For the particular case of P = 10, Fig. 3(a) shows

the value L/&[(L = (n — 1)) is the over-all length, 1, is

the wavelength at center frequency], and Fig. 3(d)

the bandwidth ratio (q =A1/k2) as a function of qbz. It

is seen that although the bandwidth is nearly constant,

the over-all length can be made arbitrarily small.

However the shortening of the taper will have a con-

siderable influence on the characteristic impedances.

Z, and ZS depend on p and v, which are :plotted on Fig.

3(b) against &. As & decreases, v decreases alscl, be-

coming zero at @2~47. 8 degrees. This means tha [. one

step vanishes. The over-all length is just a quarter

wavelength; i.e., we have the ordinary quarter-wave

transformer. If +2< 47.8 degrees, the over-all length will
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Fig. 4—The pass (p) and stop (s) bands, for
(a) 02<90 degrees, (b) ~,= 90 degrees.

be shorter than a quarter-wavelength, but v at the

same time will become negative and the step-line is no

longer monotonic. Supposing Z1/Zl = 2, Fig. 3(c) shows

Zz/Zl ancl 23/21 as functions of &. At 42~47.8 degrees,

Zz = Z, = a./~Zl. If & decreases further, Z~/Zl rapidly

decreases and 2s/21 rapidly increases.

14Te must remark that the curves L/At and g are dis-

continuous at ~z =90 degrees. The reason for this is

shown in Fig. 4(a) and 4(b). Since the requirement

for the pass band is cos 2&~ cos 24 ~ cos 2~1, we have an

infinite number of pass and stop bands as shown on

Fig. 4(a). If OZ = 90 degrees, cos 20Z = – 1, and the first,

second, third, and fourth, etc., pass bands merge into

each other [Fig. 4(b) ]. Consequently, the bandwidth,

and the over-all length at the central frequency, sud-

denly increase.

If n=5, T~(z)=2z2–1=2(~ COS 2q5+v)2-1.

Equating the coefficients,

a3 + 2a2 cos 24 + 2al cos 4$

= /J’ Cos 44 + 4p Cos 24 + /J’ + 2V’ – 1 (13)

1: ~1i, !,0.- -- 1. 1 I -,

W,,

Fig, 5,

The situation is similar again. If v <O, the step-line

is not monotonic. Fig. 5 shows the same quantities for

n =5, which we have drawn previously for n =3. The

consequences are also the same. If &m57. 5 degrees we

get the same step-line as at da= 90 degrees for n =3.

Let us see now what is the connection between L/A.

and q. Fig. 6 shows this curve for p= 10 and n=3, 5, 7, 9.

For any n the shortening of the step-line means a reduc-

tion of the bandwidth. At the points where L is an inte-

gral multiple of i./4 (marked with small circles in Fig.

6), the number of steps in the step-line changes from

n to (n+ 1)/2. The further shortening will result in a

nonmonotonic step-line represented by the broken

lines.

For the comparison of the actual lengths of the step-.

line for different values of n, the bandwidth ratio is

plotted in Fig. 7 against L/Al. It may be seen that for a

given p and g the length of this type step-line might be

shorter than that of a quarter-wave type. If, for exam-

ple, P=1O, q=l.85, we get YZ=5 and L/hl=0.391,

while the usual (quarter-wave) design would result in

YZ=4 and L/Al= O.412.

THE SHORTENING OF THIZ ST~P-LINE BY THE AP-

PLICATION OF MORE STEPS

We have seen that increasing the number of steps

results in a larger bandwidth. Let us investigate the

relation between the number of steps and over-all

length for a given bandwidth and see if it is possible to
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Fig. 6
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-The bandwidth ratio as a function of L/kL The broken
lines represent the nonmonotonic solutions.

shortel~ the monotonic step-line by using more steps.

If this is possible, the problem can now be redefined:

For a given reflection coefficient and bandwidth ratio,

what is the optimum number of steps that will result

in a minimum over-all length? Generally, to solve this

problem is very difficult because of the complicated

mathematical treatment involved. However a special

case can be solved easily.

The normalized reflection coefficient for n = 5 has the

form

P— = a3 + 2at cos 24 + 2al cos 4$. (15)
Pm

Let us introduce the notation x = cos 2$= cos ~L/2,

and arrange (15) in powers of x. Then

P— = C2X’ + Clx + co (16)
Pm

where

c,
al=—; az = ~CI; a3 = Co + ~CZ. (17)

4

If (’16) has no linear term, i.e., az = O, we get the

special case of the step-line with three steps. When the

linear term is not zero we get the step-line with five

steps.

Let us first design a monotonic step-line for a given P

and +1 whith three steps; and later, by adding the

linear term, let us construct a shorter step-line with the

same bandwidth but having five steps.

0.2

—-

_-

.—--

—+

/
—

--

k
—“

,—

n.3

0.3

/
/

-

,/

/

377’

3: ‘

“.9

/’

‘F

“ ..7

./

“-5 /

+—————

IF-:—.
0.4 L/A, 0.5

Fig. 7—The bandwidth ratio as a function of L/hi. The broken
lines represent the nonmonotonic solutions.

Prescribing X2= cos 242 the curve of the normalized

reflection coefficient is shown in Fig. 8. It cuts the

p/pm = 1 line at the point x = xl. These two points deter-

mine the bandwidth ratio and the length of t’he step- Iine.

The nearer xl is to unity, the shorter is the step-line.

‘rhus, if we want to construct a shorter step-line

having the same band width, we have to constr[lct a

parabola through the points p, xl +c, xz -i-8 where c and ~

must satisfy

Cos–1 %2 Cos–1 (X2 + a)
~ . —.— —— —. (18)

Cos–1 $1 Cos–1 (%1 + e)

It may be shown (see the Appendix), that (Cl is

always negative; i.e., these requirements cannot be ful-

filled with a monotonic step-line of fire steps. It is

proved, therefore, that the application of two fu:rther

steps cannot result in a shorter step-line.

Because of the mathematical difficulty of the genera]

proof, we cannot generalize this result. From the physi-

cal point of view, however, it is very likely that if the

application of two further steps does not result in a

shorter step-line, then the application of any number of

steps will not shorten it. Similarly, if the length Of a

three steps step-line cannot be shortened, then very

likely the length of any properly designed step-line con-

sisting of any number of steps cannot be reduced. Hence,

if the bandwidth ratio and the reflectiorl coefficient are

specified, by drawing the diagrams similar to Fig. 7 we

get the optimum number of steps.

Since in practice a finite bandwidth is always re-

quired, a finite number of steps always gives the shurtest

line. This statement does not mean that. a continuous
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91% APPENDIX

The parabola for five steps through the points p,

zl+e, xz+a is shown in Fig. 8. The coefficient of the

linear term is given by

2–(f+l) ($l+e)’+(p –l)(x,+a)’

c’ = [(X,+,)-(X2+8)] [1-(X,+6)J [1-(X2+6)] “ ’19)

Let us draw now a curve for three steps through the

points xZ+8 and P. This curve cuts the p/p~ = 1 line

at the point xl+e —el, where E1> OT and the equation

connecting (W +3) and X1+C —cl is as follows:

2 – (p + 1)($1 + C)2 + (? – 1)(X2 + 8)’

x —
—

— – (p + 1)61(2X, + 6 – 6J. (20)

We now prove that under the above conditions Cl is

negative. Since the denominator is positive it is sufficient

to investigate the sign of the numerator.

Substituting (20) in the numerator of (19) we obtain

Fig. 8—The normalized reflection coefficient as a function of
– (p + 1)6, [2(X, + e) – cl] (21)

x=cos2@ forn=3andn=5.

line (a step-line consisting of an infinite number of steps)

cannot be useful. The application of a continuous taper

may be recommended for microwaves if the resulting

steps, and the discontinuity capacitances, are large,

because the compensation of them will generally result

in a narrower bandwidth.

There is always another application where the con-

tinuous line is preferable. This is the case when two

or more pass bands are required. Because of the periodic

structure of the reflection coefficient of step-lines, these

requirements may be fulfilled with them only in special

cases.

which is negative as far as

2(I3 + e) > q > 0, (22)

Hence Cl is negative,
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Microwave Semiconductor Switching Techniques*
R. V. GARVER~, E. G. SPENCER~, AND M. A. HARPER~

Summary—This paper describes new microwave techniques em-
ploying the properties of N-type germanium diode switches. For ap-
plications requiring very high isolations, multiple switches are added
in tandem. With proper spacing, they form antiresonant cavity cir-
cuits. In this case the isolations and insertion losses in db are dkectly
additive. ~ switch is described which is normally ON and is pulsed
OFF. Fina~y, details are given of a switch in a hybrid-tee configura-

tion in which switching isolations of 50 db are obtained with an in-
sertion loss of 0.7 db.
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lhrTRODuCTION

I

N a previous publication, 1 a description is given of

the low-power microwave semiconductor switch

using iV-type germanium. The switch consists of a

germanium, point contact, diode placed across a sec-

tion of standard X-band waveguide. Isolations of 25 to

35 db, with insertion losses of 1 db, are obtained over

a 1000-mc bandwidth. The switching characteristics are

1 N1. .~. Arrnistead, E. G. Spencer, and R. D. Hatcher, “Micro-
wav-e semiconductor switch, ” PROC. IRE, vol. 44, p, 1875; December,
1956.


