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Some Notes on the Optimum Design of Stepped
Transmission-Line Transformers*
L. SOLYMAR{

Summary—This paper describes an optimum design of monotonic
stepped transmission-line transformers when the reflection coeffi~
cient and the bandwidth ratio are prescribed. For the analysis, dis-
continuity capacitances and reflection interactions are neglected and
the validity of the conclusions is therefore restricted to small steps.
The analysis is applicable to a multistep transmission line of which
the quarter-wave transformer is a special case. In particular, it is
shown that if the number of steps is increased from three to five a
larger bandwidth may be obtained, but it is not possible to reduce
the over-all length in this manner. For a given bandwidth, the
shortest taper is always a stepped transmission line and never a
continuous one.

INTRODUCTION

HE optimum design of stepped transmission-line
transformers (hence called step-lines) has been
a subject of interest for the past few years.

At first Burkhardtmaier! gave an optimum design
method for step-lines using the Tchebycheff poly-
nomials. Bolinder,? solving approximately the syn-
thesis of continuous lines, suggested the use of Dolph’s
method for optimizing the properties of the step-lines.
Collin,? independently of Burkhardtmaier, solved the
same problem and got the same results. Riblet! gave
the general synthesis of step-lines and proved the physi-
cal realizability of the optimum step-line. Cohn,’ sup-
posing small steps, derived simple expressions for the
design of the optimum step-line.

The problem solved in these papers is the following:
For a specified number of steps the design method
provides the maximum possible bandwidth for a speci-
fied reflection coefficient, or conversely, the minimum
possible reflection coefficient for a given bandwidth. The
length of the steps (at center frequency) is in each case
a quarter-wavelength.

By increasing the number of steps, wider bandwidth
is attainable, but the over-all length of the step-line

* Manuscript received by the PGMTT, February 7, 1958; re-
vised manuscript received, May 2, 1958.

f Standard Telecommun. Labs. Ltd., Enfield Labs., Enfield,
Middlesex, Eng.

t'W. Burkhardtmaier, “Widerstandstransformation mit Lei-
tungen,” Funk und Ton, vol. 3, pp. 151-167, 202-213; March, 1949,

2 F. Bolinder, “Fourier transforms in the theory of inhomogeneous
transmission lines,” in “Kungliga Tekniska Hogskolans Handlingar,”
Stockholm, Sweden, no. 48; 1951.

3 R. E. Collin, “Theory and design of wide-band multi-section
quarter wave transformers,” Proc. IRE, vol. 43, pp. 179-185;
February, 1955.

+H. J. Riblet, “General synthesis of quarter-wave impedance
transformers,” IRE Trans. oN MickowAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 36-37; January, 1957.

5S. B. Cohn, “Optimum design of stepped transmission-line
transformers,” IRE Trans. o MicrowavE THEORY AND TECH-
NIQUES, vol. MTT-3, pp. 16-21; April, 1955.

increases. The question obviously arises: Is it possible
to realize the same specified reflection coefficient with
a shorter over-all length (using, where necessary, steps
shorter than the quarter-wavelength) if we allow a
certain reduction in the bandwidth?

Because of the validity of the different approxima-
tions, some restrictions upon the form of the step-line
are necessary. (For the design, all the solutions neglect
the higher order modes and the junction discontinuities.)
Therefore we use the requirement that the taper has to
be monotonic. In our calculations we shall apply the
same approximations as Cohn; 4.e., we assume small
steps.

DESIGN OF A GENERAL (NOT-QUARTER-WAVE)
STEP-LINE

Assuming that the steps are small, we may neglect
reflection interactions and express the reflection co-
efficient of the step-line (see Fig. 1) referred to the
center as follows:

p = Ay L et f . f D8 (1)
where
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Zn=the characteristic impedance of the mth step,
¢ =B,
8 =phase-change coefficient,
I=the length of a step.

Supposing the step reflections to be symmetrical,
re, Ai=A,, As=A,, etc., and # to be odd (as will
be clear later, this by no means restricts generality), we
get

p = Ay + 24 (12 cos 2¢
+ 24 (g2 cOS 4 + + + + + 2.4y cos (n — 1)p.  (2)

To get an optimum performance, we let the reflection
coefficient be proportional to a Tchebycheff polynomial,
i.e.,

p = al1)2(u cos 2¢ + ») 3)
where$

¢ We use the same method by which Riblet generalized Dolph's
paper. See H. J. Riblet, “Discussion on ‘A current distribution for
broadside arrays which optimizes the relationships between beam-
Wid;h and side-lobe level,” ” Proc. IRE, vol, 35, pp. 489-492; May,
1947,

C. L. Dolph, “A current distribution for broadside arrays which
optimizes the relationship between beam-width and side-lobe level,”
Proc. IRE, vol. 34, pp. 335-348; June, 1946.
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Fig. 1—The stepped transmission line.

Tn(x) = cos (m cos™! x) \ x} <1
Tw(x) = cosh (m cosh™! x) t x[ > 1. (4

Now, having two free parameters y and », we may pre-
scribe the value of the reflection coefficient at zero fre-
quency and at the highest frequency of the pass band
as well. Hence the two unknowns in the argument
may be determined by the conditions

p
_=p
Pm

if ¢ =0 (3)

and

i’«l=1 if
Pm

¢=¢’2)

where p,. is the specified value of the reflection coeffi-
cient in the pass band and p is defined by (5); s.e., it
is the ratio of the reflection coefficient at zero frequency
and the maximum reflection coefficient in the pass
band. Choosing «=p,, the equations for the unknowns
are

pt+v =2z
hCos 2¢s v = —1 (6)
where 2z, is to be determined by
Tu-1sa(z0) = P. (7
Solving (6) for u and », we get
z0 + 1 1 + zpcos 2¢y
b= L= TR
1 — cos 2¢s 1 — cos 2¢;

In Fig. 2 we see the transformation
g = ucos 2¢ + ». (9)

When ¢ changes from 0 to ¢y(¢<90°), 2 runs from
g9 to —1. At ¢ =¢; (where ¢, fulfills u cos 2¢;+rv=1)

=1. So between ¢; and ¢, Izl <1.

Because of the properties of the Tchebycheff poly-
nomials, if lzl <1, then ’Tl/g(n,l)(z)l <1. So between
N =27l/ps and ANy =2wl/¢p1 the reflection coefficient ful-
fills the requirements. The design is optimum in the
sense that for a given p, and for a given ¢ (i.e., lower
edge of the band is given), it results in the greatest
bandwidth.

It may be shown that our design contains, as a special
case, the design of Cohn. If ¢»=90 degrees our design
agrees with that of Cohn for » steps. If
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Fig. 2—The transformation z=pu cos Z¢+v.

1
¢y = 3 cos‘1< - ——-):
20

i.e., v=0, we get the step-line of Cohn for (n+41)/2
steps. So it also includes all the cases when the number
of steps is even.

Further, we must compute the coefficients

. Ay
Ail or the coefficient a; = —.
P

and with their help, determine the characteristic imped-
ances. Performing the necessary calculations, we get
for the ratio of consecutive characteristic impedances

Zm+1 _ <_Z_n_p}> am/((n + ag * " - -{— (ln).
Zy

P (10)

It may be immediately seen from (10) that the re-
quirement for a monotonic step-line is equivalent to
the mathematical condition that ¢,, >0.

Examples

If n=3, T(nyp(z)=T1(s)=2=p cos 2¢+v.
Equating the coefficients

as + 2a1 cos 2¢p = u cos 2¢ + v (11)

we get
(12)

For the particular case of p=10, Fig. 3(a) shows
the value L/AJ(L=(n—1)) is the over-all length, \, is
the wavelength at center frequency], and Fig. 3(d)
the bandwidth ratio (g=A:i/Ns) as a function of ¢s. It
is seen that although the bandwidth is nearly constant,
the over-all length can be made arbitrarily small.
However the shortening of the taper will have a con-
siderable influence on the characteristic impedances.
Zy and Z, depend on u and », which are plotted on Fig.
3(b) against ¢». As ¢ decreases, » decreases alsc, be-
coming zero at ¢»=247.8 degrees. This means that one
step vanishes. The over-all length is just a quarter
wavelength; 7.e., we have the ordinary quarter-wave
transformer. If ¢ <47.8 degrees, the over-all length will

U — — 1
ay =V, a1 = 4.
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Fig. 4—The pass (p) and stop (s) bands, for
(@) $2<90 degrees, (b) ¢p2=90 degrees.

be shorter than a quarter-wavelength, but » at the
same time will become negative and the step-line is no
longer monotonic. Supposing Zs/Z;=2, Fig. 3(c) shows
Zy/Zy and Z3/Zy as functions of ¢y. At ¢22247.8 degrees,
Zy=Z3=~/2Z:. If ¢ decreases further, Z;/Z; rapidly
decreases and Z,/Z; rapidly increases.

We must remark that the curves L/A; and ¢ are dis-
continuous at ¢, =90 degrees. The reason for this is
shown in Fig. 4(a) and 4(b). Since the requirement
for the pass band is cos 2¢. <cos 2¢ <cos 2¢,, we havean
infinite number of pass and stop bands as shown on
Fig. 4(a). If ¢»=90 degrees, cos 2¢, = —1, and the first,
second, third, and fourth, etc., pass bands merge into
each other |Fig. 4(b)]. Consequently, the bandwidth,
and the over-all length at the central frequency, sud-
denly increase.

If =35, Te(z) =222—1=2(u cos 2¢+»)2—1.

Equating the coefficients,

as + 2as cos 2¢ 4 2a1 cos 4¢

= p?cos 4¢ + 4p cos 2¢ 4+ u? 4+ 22 — 1 (13)
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we get

ay = p? F 22 —1; a =2, a =3 (14)

The situation is similar again. 1{ » <0, the step-line
is not monotonic. Fig. 5 shows the same quantities for
n=>5, which we have drawn previously for #=3. The
consequences are also the same. If ¢,~57.5 degrees we
get the same step-line as at ¢, =90 degrees for n=23.

Let us see now what is the connection between L/\,
and ¢. Fig. 6 shows this curve for p=10and =3, 5,7, 9.
For any # the shortening of the step-line means a reduc-
tion of the bandwidth. At the points where L is an inte-
gral multiple of \.,/4 (marked with small circles in Fig.
6), the number of steps in the step-line changes from
n to (n+1)/2. The further shortening will result in a
nonmonotonic step-line represented by the broken
lines.

For the comparison of the actual lengths of the step-
line for different values of #, the bandwidth ratio is
plotted in Fig. 7 against L/A;. It may be seen that for a
given p and ¢ the length of this type step-line might be
shorter than that of a quarter-wave type. If, for exam-
ple, »=10, ¢=1.85, we get =5 and L/A\=0.391,
while the usual (quarter-wave) design would result in
n=4 and L/\=0.412,

THE SHORTENING OF THE STEP-LINE BY THE AP-
PLICATION OF MORE STEPS

We have seen that increasing the number of steps
results in a larger bandwidth. Let us investigate the
relation between the number of steps and over-all
length for a given bandwidth and see if it is possible 1o
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Fig. 6—The bandwidth ratio as a function of L/\. The broken
lines represent the nonmonotonic solutions.

shorten the monotonic step-line by using more steps.
If this is possible, the problem can now be redefined:
For a given reflection coefficient and bandwidth ratio,
what is the optimum number of steps that will result
in a minimum over-all length? Generally, to solve this
problem is very difficult because of the complicated
mathematical treatment involved. However a special
case can be solved easily.

The normalized reflection coefficient {for #=>5 has the
form

P
— = a3 + 2a; cos 2¢ + 2a; cos 4¢.
Pm

(15)

Let us introduce the notation x=cos 2¢=cos BL/2,
and arrange (15) in powers of x. Then

Lo o 4 Cux + Co
P

(16)

where

Cy

= —; as — CO + %02 <17)

o = %‘Ch

If (16) has no linear term, .., a,=0, we get the
special case of the step-line with three steps. When the
linear term is not zero we get the step-line with five
steps.

Let us first design a monotonic step-line for a given p
and ¢, whith three steps; and later, by adding the
linear term, let us construct a shorter step-line with the
same bandwidth but having five steps.
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Fig. 7—The bandwidth ratio as a function of L/M\. The broken
lines represent the nonmonotonic solutions.

Prescribing xe=cos 2¢. the curve of the normalized
reflection coefficient is shown in Fig. 8. It cuts the
p/pm=1 line at the point x=x1. These two points deter-
mine the bandwidth ratio and the length of the step-line,
The nearer x; is to unity, the shorter is the step-line.

Thus, if we want to construct a shorter step-line
having the same bandwidth, we have to construct a
parabola through the points p, &1-4¢, ¥2-+0 where e and 8
must satisty

costay cos ! (xp+ 8) "
1 cos~la;  cost (w1 + €) (18)

It may be shown (see the Appendix), that (i is
always negative; i.e., these requirements cannot be ful-
filled with a monotonic step-line of five steps. It is
proved, therefore, that the application of two further
steps cannot result in a shorter step-line.

Because of the mathematical difficulty of the general
proof, we cannot generalize this result. From the physi-
cal point of view, however, it is very likely that if the
application of two further steps does not result in a
shorter step-line, then the application of any number of
steps will not shorten it. Similarly, if the length of a
three steps step-line cannot be shortened, then very
likely the length of any properly designed step-line con-
sisting of any number of steps cannot be reduced. Hence,
if the bandwidth ratio and the reflection coefficient are
specified, by drawing the diagrams similar to Fig. 7 we
get the optimum number of steps.

Since in practice a finite bandwidth is always re-
quired, a finite number of steps always gives the shortest
line. This statement does not mean that a continuous
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Fig. 8 —The normalized reflection coefficient as a function of
x=cos 2¢ for =3 and n=35.

line (a step-line consisting of an infinite number of steps)
cannot be useful. The application of a continuous taper
may be recommended for microwaves if the resulting
steps, and the discontinuity capacitances, are large,
because the compensation of them will generally result
in a narrower bandwidth. '

There is always another application where the con-
tinuous line is preferable. This is the case when two
or more pass bands are required. Because of the periodic
structure of the reflection coefficient of step-lines, these
requirements may be fulfilled with them only in special
cases.
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APPENDIX

The parabola for five steps through the points p,
x1+e€, x3+8 is shown in Fig. 8. The coefficient of the
linear term is given by

C - 2—(p+ 1) (@t +(p—1)(0+0)* (19)

D [t — Gt 1=t ][ (@t5)]

Let us draw now a curve for three steps through the
points w40 and p. This curve cuts the p/p, =1 line
at the point x;4e—e, where >07 and the equation
connecting (x;+8) and x;+e—e¢; is as follows:

2=+ D@+ "+ (p — Diw + 8)*
= — ([7 —|“ 1)61(2x1 + € — 61).

We now prove that under the above conditions Cj is
negative. Since the denominator is positive it is sufficient
to investigate the sign of the numerator.

Substituting (20) in the numerator of (19) we obtain

(20)

= (0 + Deal2(x + ¢ — «] (2D
which is negative as far as
2x1+ € > e > 0. (22)

Hence (i is negative.
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" & must be positive, because the bandwidth ratio is decreasing
as ¢ decreases.

Microwave Semiconductor Switching Techniques*
R. V. GARVERY, E. G. SPENCERY, axp M. A. HARPER?}

Summary—This paper describes new microwave techniques em-
ploying the properties of N-type germanium diode switches. For ap-
plications requiring very high isolations, multiple switches are added
in tandem. With proper spacing, they form antiresonant cavity cir-
cuits. In this case the isolations and insertion losses in db are directly
additive. A switch is described which is normally ON and is pulsed
OFF. Finally, details are given of a switch in a hybrid-tee configura-
tion in which switching isolations of 50 db are obtained with an in-
sertion loss of 0.7 db.
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INTRODUCTION

the low-power microwave semiconductor switch
using N-type germanium. The switch consists of a
germanium, point contact, diode placed across a sec-
tion of standard X-band waveguide. Isolations of 25 to
35 db, with insertion losses of 1 db, are obtained over
a 1000-mc bandwidth. The switching characteristics are

]:[N a previous publication,! a description is given of

t M. A. Armistead, E. G. Spencer, and R. D. Hatcher, “Micro-
wave semiconductor switch,” Proc. IRE, vol. 44, p. 1875; December,
1956.



